On Combinatorial Properties of Binary Spaces

نویسندگان

  • Beth Novick
  • András Sebö
چکیده

Abs t rac t . A binary clutter is the family of inclusionwise minimal supports of vectors of affine spaces over GF(2). Binary clutters generalize various objects studied in Combinatorial Optimization, such as paths, Chinese Postman Tours, multiflows and one-sided circuits on surfaces. The present work establishes connections among three matroids associated with binary clutters, and between any of them and the binary clutter. These connections are then used to compare well-known classes of binary clutters; to provide polynomial algorithms which either conf~m the membership in subclasses, or provide a forbidden clutter-minor; to reformulate and generalize a celebrated conjecture of Seymour on ideal binary clutters in terms of multiflows in matroids, and to exhibit new cases of its validity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Spaces And Order Topologies

An archetypal problem discussed in computer science is the problem of searching for a given number in a given set of numbers. Other than sequential search, the classic solution is to sort the list of numbers and then apply binary search. The binary search problem has a complexity of O(logN) for a list of N numbers while the sorting problem cannot be better than O(N) on any sequential computer f...

متن کامل

The N-point Functions for Intersection Numbers on Moduli Spaces of Curves

Abstract. Using the celebrated Witten-Kontsevich theorem, we prove a recursive formula of the n-point functions for intersection numbers on moduli spaces of curves. It has been used to prove the Faber intersection number conjecture and motivated us to find some conjectural vanishing identities for Gromov-Witten invariants. The latter has been proved recently by X. Liu and R. Pandharipande. We a...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

Geometric Differential Evolution for Combinatorial and Programs Spaces

Geometric differential evolution (GDE) is a recently introduced formal generalization of traditional differential evolution (DE) that can be used to derive specific differential evolution algorithms for both continuous and combinatorial spaces retaining the same geometric interpretation of the dynamics of the DE search across representations. In this article, we first review the theory behind t...

متن کامل

A First Step toward Combinatorial Pyramids in n-D Spaces

Combinatorial maps define a general framework which allows to encode any subdivision of an nD orientable quasi-manifold with or without boundaries. Combinatorial pyramids are defined as stacks of successively reduced combinatorial maps. Such pyramids provide a rich framework which allows to encode fine properties of the objects (either shapes or partitions). Combinatorial pyramids have first be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995